Атомная энергия для военных целей (Смит/Иванов)/Глава IX
← Предыдущая глава | Атомная энергия для военных целей — Глава IX. Общее рассмотрение вопроса о разделении изотопов. , пер. под ред. Г. Н. Иванова |
Следующая глава → |
Язык оригинала: английский. Название в оригинале: Atomic Energy for Military Purposes (Chapter IX. General discussion of the separation of isotopes). — См. Содержание. Дата создания: 1945. Источник: Генри Деволф Смит Атомная энергия для военных целей / Перевод с английского под редакцией Г. Н. Иванова. — Москва: Государственное транспортное железнодорожное издательство, 1946. — С. 165—182. — 276 с |
9.1. Возможность изготовления атомной бомбы из U-235 была установлена до того. как был открыт плутоний. Так как давно было ясно, что разделение изотопов урана явится прямым и главным этапом в производстве такой бомбы, то методы разделения изотопов урана были предметом тщательных исследований в течение по меньшей мере шести лет. В то же время, как только было установлено, что выделение дейтерия тоже имеет большое значение, стал изучаться вопрос о разделении не только изотопов урана, но и изотопов водорода. В настоящей главе рассматриваются общие проблемы разделения изотопов. Последующие главы представляют собой подробное описание отдельных процессов.
ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАЗДЕЛЕНИЕ ИЗОТОПОВ
9.2. По определению, изотопы элемента отличаются своими массами, но не химическими свойствами. Точнее говоря, хотя массы ядер изотопов и их строение различны, заряды ядер одинаковы, и поэтому наружные электронные оболочки практически тождественны. Таким образом, для большинства практических целей изотопы какого-либо элемента можно разделить только при помощи процессов, зависящих от массы ядра.
9.3. Хорошо известно, что молекулы газа или жидкости находятся в непрерывном движении и что их средняя кинетическая энергия зависит только от температуры и не зависит от химических свойств молекулы. Таким образом в газе, состоящем из смеси двух изотопов, средняя кинетическая энергия легких и тяжелых молекул будет одинакова. Так как кинетическая энергия молекулы равна 1/2 mv2, где m — масса и v — скорость молекулы,
то очевидно, что, в среднем, скорость более легкой молекулы должна быть больше скорости более тяжелой. Поэтому, по крайней мере в принципе, любой процесс, зависящий от средней скорости молекул, можно использовать для разделения изотопов. К сожалению, средняя скорость обратно пропорциональна корню квадратному из массы, так что для газообразных соединений изотопов урана это различие очень мало. К тому же, хотя средние скорости различаются, интервалы скоростей в значительной мере перекрываются. Так, в случае газообразного шестифтористого урана более 49% легких молекул имеют такие же малые скорости, как и 50% тяжелых молекул.
9.4. Очевидно, нет практически осуществимого способа приложения механических сил непосредственно к отдельным молекулам; их нельзя толкать палкой или тянуть веревкой. Однако, на них воздействуют гравитационные или, если молекулы ионизованы, электрические и магнитные поля. Гравитационные силы пропорциональны массе. В очень высоком вакууме атомы U-235 и U-238 будут падать с одинаковым ускорением, но так же, как перо и камень падают с разными скоростями в воздухе, где имеются силы трения, препятствующие движению, возможны условия, при которых сочетание гравитационных и противодействующих им внутримолекулярных сил заставит тяжелые атомы двигаться отлично от легких. Электрическими и магнитными полями легче управлять, чем гравитационными или «псевдогравитационными» (т. е. полями центробежных сил) и они весьма эффективны в разделении ионов различной массы.
9.5. Кроме гравитационных или электромагнитных сил, существуют внутриатомные и внутримолекулярные силы. Это силы взаимодействия между молекулами, и ими определяются скорости химических реакций, процессов испарения и т. д. Вообще говоря, такие силы зависят от внешних электронов молекул, а не от массы ядра. Однако, там, где силы взаимодействия между отдельными атомами или молекулами приводят к образованию новых молекул, влияние массы (обычно очень малое) сказывается.
В соответствии с законами квантовой механики, уровни энергии молекул несколько меняются, причем для разных изотопов по разному. Это, как мы увидим, вызывает некоторые изменения в поведении двух изотопов в определенных химических реакциях, хотя
различие в поведении значительно меньше обычного различия в химическом поведении разных элементов.
9.6. Таким образом, главными факторами, которые следует иметь в виду при выборе процесса разделения, являются: равенство средней тепловой кинетической энергии молекул при данной температуре; гравитационные или центробежные эффекты, пропорциональные массе молекул; электрические или магнитные силы, влияющие на ионизованные молекулы, и внутриатомные или внутримолекулярные силы. В некоторых процессах разделения изотопов используется только один какой-нибудь из этих факторов, и общая степень разделения может быть предсказана. В других процессах разделения несколько этих факторов встречаются одновременно, так что такое предсказание становится затруднительным.
КРИТЕРИИ ДЛЯ ОЦЕНКИ ПРОЦЕССА РАЗДЕЛЕНИЯ
9.7. Раньше, чем приступить к детальному рассмотрению отдельных процессов разделения изотопов, мы выясним, какие общие требования предъявляются к этому процессу. Главные критерии для суждения о процессе разделения изотопов описываются нами ниже.
КОЭФФИЦИЕНТ РАЗДЕЛЕНИЯ
9.8. Коэффициент разделения, или как его иногда называют, коэффициент обогащения какого-либо разделительного процесса, это отношение относительной концентрации выделяемого изотопа после обогащения к его относительной концентрации в исходном продукте. Точнее, если до разделения числа атомов изотопов с массами m1 и m2 равны, соответственно, n1 и n2 (на 1 г смеси изотопов), а после разделения соответствующие числа равны n'1 и n'2, то коэффициент разделения равен
Это определение применимо как к одной ступени разделительной установки, так и ко всей установке, состоящей из многих ступеней. Обычно нас интересует либо коэффициент разделения одной ступени, либо общий коэффициент разделения всего процесса. Если
r мало отличается от единицы, как это часто бывает для одной ступени, то иногда удобнее пользоваться величиной r-1 вместо r. Величину r-1 называют коэффициентом обогащения. В природном уране m1=235, m2=238 и n1/n2 = 1/140, в 90%-ном U-235, n'1/n'2 = 9/1. Таким образом, при получении 90%-ного U-235 из природного урана общее значение величины r должно быть равно около 1260.
ПРОИЗВОДИТЕЛЬНОСТЬ
9.9. Почти для всех способов разделения высокий коэффициент разделения достигается за счет низкого выхода. В дальнейшем, если не будет специальной оговорки, мы будем выражать производительность количеством чистого U-235. Таким образом если, например, разделительный аппарат обладает коэффициентом разделения 2 (т. е. n1' / n2' = 1/70) и производительностью в 1 грамм в день, то это означает, что из природного урана этот аппарат дает за один день продукт, состоящий из смеси 1 г U-235 и 70 г U-238.
ЗАГРУЗКА
9.10. Общее количество вещества, содержащееся в разделительной установке, называется «загрузкой». Загрузка может достигать весьма больших величин в установке, состоящей из большого числа ступеней.
ПУСКОВОЙ ПЕРИОД
9.11. В разделительной установке с большой загрузкой требуется довольно продолжительное время — недели или месяцы — от начала пуска до достижения стационарных условий работы. При расчете времени этот «пусковой период», или период установления равновесия, должен быть добавлен ко времени строительства завода.
ЭФФЕКТИВНОСТЬ
9.12. Из общего количества сырья, поступающего в разделительную установку, часть будет обогащена легкой компонентой, часть обеднена, часть останется неизмененной. Некоторое количество каждой из этих трех фракций будет потеряно и часть регенерирована. Очевидно, что важно иметь метод высоко производительного восстановления обогащенного вещества. В некоторых
процессах количество неизмененного вещества ничтожно мало; но в некоторых, особенно в электромагнитном методе, описанном ниже, это — самая большая фракция, и, следовательно, эффективность, которой она восстанавливается для повторного цикла, является весьма существенной. Значимость регенерации обедненного продукта существенно зависит от степени обеднения отвала. Таким образом, вообще говоря, понятие эффективности не является вполне однозначным.
СТОИМОСТЬ
9.13. Так же, как и для всех частей проекта по урану, выигрыш во времени был значительно важнее, чем материальные издержки. Поэтому целый ряд больших разделительных установок для U-235 и дейтерия обошлись дороже, чем было бы необходимо, если бы строительство было отложено на несколько месяцев или лет, до тех пор пока не были бы разработаны более совершенные процессы.
НЕКОТОРЫЕ МЕТОДЫ РАЗДЕЛЕНИЯ
ГАЗОВАЯ ДИФФУЗИЯ
9.14. Еще в 1896 г. лорд Рэлей показал, что смесь двух газов различных атомных весов может быть частично разделена, если заставить смесь диффундировать через пористую перегородку в вакуум. Молекулы легкого газа благодаря большей их средней скорости диффундируют через перегородку быстрее, вследствие чего прошедший через перегородку газ обогащен более легкой компонентой, а оставшийся газ (который не прошел через перегородку) обеднен легкой компонентой. Газ, максимально обогащенный легкой компонентой, получится в том случае, когда количество продиффундировавшего газа настолько мало, что не вызывает заметного обеднения оставшегося газа. Если процесс диффузии длится до тех пор, пока почти весь газ не прошел через перегородку, то среднее обогащение прошедшего газа естественно уменьшается. В следующей главе это явление рассмотрено более детально. Здесь мы только укажем, что принимая скорости диффузии обратно пропорциональными корням квадратным из молекулярных весов, мы получаем для коэффициента разделения
в начальной стадии процесса диффузии, называемого «идеальным коэффициентом разделения» α, следующее выражение:
где M1 — молекулярный вес более легкого и M2 — молекулярный вес более тяжелого газа. Применяя эту формулу к случаю урана, можно убедиться в трудности задачи разделения его изотопов.
Так как сам уран не является газом, то для разделения нужно применить какое-нибудь его газообразное соединение. Единственно подходящим является шестифтористый уран, UF6 давление пара которого равно одной атмосфере при температуре 56°С. Так как фтор имеет только один изотоп, то шестифтористыми соединениями являются U235F6 и U238F6 с молекулярными весами 349 и 352 соответственно.
Таким образом, если небольшому количеству шестифтористого урана дать диффундировать через пористую перегородку, то прошедший газ будет обогащен соединением U235F6 с коэффициентом
который очень далек от требуемого 1260 (см. параграф 9.8).
9.15. Этот расчет мог бы создать впечатление о безнадежности разделения изотопов (исключая, возможно, изотопы водорода) при помощи диффузионных процессов. В действительности, однако, такие методы могут с успехом применяться — даже для урана. Метод, который был применен Ф. В. Астоном впервые при частичном разделении изотопов (неона), был как раз метод газовой диффузии. Позднее Г. Герц и другие, работая с многоступенчатыми диффузионными агрегатами с рециркуляцией, смогли добиться практически полного разделения изотопов неона. Так как многоступенная система с рециркуляцией необходима почти при всех методах разделения, она будет подробно описана сразу же после вступительных замечаний о различных методах, к которым она имеет отношение.
ФРАКЦИОННАЯ ПЕРЕГОНКА
9.16. Разделение при помощи перегонки смесей веществ с разными точками кипения, т. е. разными упругостями пара — процесс
хорошо известный в промышленности. Разделение спирта и воды (разность температур кипения около 20°С) обычно проводится в простом перегонном кубе без использования каких-либо аппаратов, кроме выпарного аппарата и конденсатора. Конденсируемое вещество (конденсат) может быть собрано и снова перегнано, если это нужно, несколько раз. Для разделения соединений с очень близкими точками кипения было бы слишком трудно проводить необходимое число последовательных выпариваний и конденсаций. Вместо этого применяют метод непрерывного разделения в разделительной колонне. Основной задачей этой колонны является создание потока пара. направленного вверх, и потока жидкости, стекающей вниз, — оба потока находятся в тесном соприкосновении и постоянно обмениваются молекулами. Молекулы фракции с более низкой точкой кипения имеют относительно большую тенденцию попасть в поток паров, и наоборот. Такой метод перегонки с противотоком можно применять для разделения легкой и тяжелой воды, точки кипения которых различаются на 1, 4°С.
ПРИМЕНЕНИЕ ПРОТИВОТОКА
9.17. Метод противотока полезен не только в двухфазных (жидкость-газ) процессах перегонки, но и в других случаях разделения, таких как диффузия под влиянием температурного градиента внутри однофазных систем, или разделение под действием центробежных сил. Противоток может быть образован двумя газами, двумя жидкостями или газом и жидкостью.
ЦЕНТРИФУГИРОВАНИЕ
9.18. Мы уже отмечали, что гравитационное разделение двух изотопов возможно, так как гравитационные силы, заставляющие молекулы двигаться вниз, пропорциональны молекулярным весам, а внутримолекулярные силы, препятствующие этому движению, зависят от конфигурации электронов, а не от молекулярных весов. Так как метод центрифугирования это в сущности метод применения псевдогравитационных сил большой величины, то он всегда рассматривался, как метод, пригодный для разделения изотопов. Первые опыты с центрифугами потерпели, однако, неудачу. Дальнейшее усовершенствование быстроходных центрифуг Дж. У. Бимсом и другими привело к успешным результатам.
Г. К. Юри предложил высокие цилиндрические центрифуги с противотоком. Они нашли успешное применение.
9.19. В противоточной центрифуге во внешней части вращающегося цилиндра поток пара направлен вниз, а в центральной или аксиальной области — вверх. Через поверхность раздела между двумя потоками происходит постоянная диффузия обоих типов молекул из одного потока в другой; поле радиальных сил центрифуги действует сильнее на тяжелые молекулы, чем на более легкие, так что концентрация тяжелых молекул увеличивается на периферии и уменьшается в аксиальной области; для более легких молекул картина будет обратной.
9.20. Значительным преимуществом центрифуги при разделении тяжелых изотопов типа урана является то, что коэффициент разделения зависит от разности масс обоих изотопов, а не от квадратного корня из отношения масс, как в диффузионных методах.
МЕТОД ТЕРМОДИФФУЗИИ
9.21. Из кинетической теории газов следует, что скорости диффузии газов с разными молекулярными весами различны. Возможность практического осуществления разделения изотопов при помощи термодиффузии была впервые показана при теоретическом исследовании столкновений молекул и сил взаимодействия между ними. Исследования, проведенные Энскогом и Чэпменом до 1920 г., показали, что, если в смеси газов имеется температурный градиент, то один тип молекул будет стремиться концентрироваться в холодной области, а другой — в горячей. Это стремление зависит не только от молекулярных весов, но также от сил взаимодействия между молекулами. Если газ представляет собой смесь двух изотопов, то более тяжелый изотоп может собираться в горячей области, или в холодной, или совсем не накопляется, в зависимости от природы внутримолекулярных сил. Направление разделения может измениться на обратное при изменении температуры или относительной концентрации.
9.22. Явление термодиффузии впервые было использовано для разделения изотопов Г. Клузиусом и Г. Дикелем в Германии в 1938 г. Они построили вертикальную трубу, вдоль оси которой была натянута нагретая проволока, создававшая разность температур
около 600°С между осью и периферией. Эффект получился двойной. Во-первых, тяжелые изотопы в тех веществах, которые изучались Клузиусом и Дикелем, концентрировались вблизи холодной внешней стенки, и, во-вторых, холодный газ на периферии имел тенденцию опускаться вниз, а горячий газ на оси — подниматься вверх. Такая тепловая конвекция установила встречный поток, и термодиффузия вызвала преимущественный поток тяжелых молекул к периферии через поверхность раздела между двумя потоками.
9.23. Теория термодиффузии в газах достаточно сложна; теории явления термодиффузии в жидкостях совсем нет. Однако, эффект разделения наблюдается и с успехом использовался для разделения легкого и тяжелого шестифтористого урана.
МЕТОД ХИМИЧЕСКОГО (ИЗОТОПНОГО) ОБМЕНА
9.24. Во вступительной части к этой главе мы отмечали, что есть основания считать, что разделение изотопов может быть достигнуто обычными химическими реакциями. Действительно, было найдено, что так называемая константа равновесия в простых обменных реакциях между соединениями двух разных изотопов для обоих изотопов не в точности одинакова, и таким образом в реакциях такого типа разделение возможно. Так, при каталитическом обмене атомами водорода между газообразным водородом и водой, вода содержит в три-четыре раза больше дейтерия, чем находящийся с ней в равновесии газообразный водород. Для водорода и паров воды наблюдается тот же эффект, но равновесие устанавливается быстрее. Этот метод можно приспособить для осуществления непрерывного процесса с противотоком, аналогичного применяемому при перегонке, и такие установки действительно используются для получения тяжелой воды. Общий метод хорошо понятен, однако известно, что эффективность разделения, вообще говоря, уменьшается с увеличением молекулярного веса, так что вероятность успешного применения его для тяжелых изотопов, подобных урану, невелика.
ЭЛЕКТРОЛИТИЧЕСКИЙ МЕТОД
9.25. Электролитический метод разделения изотопов основан на том открытии, что вода в электролитических ваннах, применяемых
в обычном промышленном производстве водорода и кислорода, имеет повышенную концентрацию молекул тяжелой воды. Полного объяснения этого явления еще нет. Всю продукцию тяжелого водорода до войны практически получали электролитическим методом. Наибольшее количество производилось в Норвегии, но в достаточных для многих экспериментальных целей количествах тяжелый водород получался и в США.
ОБЩИЙ ОБЗОР СТАТИСТИЧЕСКИХ МЕТОДОВ
9.26. Описанные выше шесть методов разделения изотопов (диффузия, перегонка, центрифугирование, термодиффузия, изотопный обмен и электролиз) были испытаны с известным успехом либо на уране, либо на водороде, либо на обоих веществах. Каждый из этих методов основан на небольших различиях в среднем поведении молекул различных изотопов. Так как средние величины, по определению, являются предметом статистики, то все методы. зависящие в основном от среднего поведения, называются статистическими методами.
9.27. С точки зрения критериев, установленных для суждения о процессах разделения, все шесть статистических методов довольно схожи. В каждом случае коэффициент разделения невелик, так что требуется много последовательных ступеней разделения. В большинстве случаев на установках среднего размера может быть переработано относительно большое количество вещества. Загрузка и пусковой период (время установления равновесия) значительно колеблются, но обычно высоки. Сходство шести методов исключает возможность окончательного выбора метода без предварительного подробного изучения данного изотопа, требуемой производительности и т. д. Реакция обмена и электролитические методы вероятно непригодны в случае урана; точно так же никакая схема перегонки себя не оправдала. Остальные три метода были разработаны с различным успехом для урана, но не применяются для водорода.
ЭЛЕКТРОМАГНИТНЫЙ МЕТОД И ПРЕДЕЛЫ ЕГО ПРИМЕНИМОСТИ
9.28. Существование нерадиоактивных изотопов впервые было доказано при изучении ионизованных молекул газа, движущихся в электрическом и магнитном полях. Это — поля, которые являются основой так называемого масс-спектрографического или электромагнитного метода разделения изотопов. Электромагнитный метод является наиболее подходящим для определения относительного содержания (распространенности) изотопов. Он обычно применяется для проверки результатов разделения изотопов урана
методами, описанными выше. Ценность электромагнитного метода заключается в том, что с его помощью легко произвести почти полное разделение изотопов, очень быстро, с малой загрузкой и с коротким пусковым периодом. Чтобы ответить на вопрос, почему же тогда рассматриваются любые другие методы разделения, достаточно напомнить, что обычный масс-спектрограф может разделять лишь ничтожные количества вещества, обычно порядка долей микрограмма в час.
9.29. Чтобы понять причину такой ограниченной производительности, мы опишем в общих чертах принцип действия простого масс-спектрографа, впервые употреблявшегося А.Дж. Демпстером в 1918 г. Прибор изображен схематически на рис. 5. Разделяемое
газообразное соединение вводится в пространство, где часть его молекул ионизуется электрическим разрядом. Некоторые из ионов проходят через щель S1 Между S1 и S2 они ускоряются электрическим полем, которое сообщает им всем практически одинаковую кинетическую энергию, в тысячи раз большую средней тепловой энергии. Так как теперь все ионы обладают практически одинаковыми кинетическими энергиями, то более легкие ионы должны иметь меньшее количество движения, чем более тяжелые. Попадая в магнитное поле через щель S2, все ионы движутся (перпендикулярно магнитному полю) по полуокружностям с радиусами, пропорциональными их количествам движения. Поэтому легкие ионы будут двигаться по меньшей полуокружности, чем тяжелые, и, если поместить коллектор в соответствующее положение, будут собраны только легкие ионы.
9.30. Оставляя в стороне детальное рассмотрение прибора, мы отметим лишь главные причины, лимитирующие количества разделяемого вещества. Эти причины состоят в следующем: во-первых, трудно получить большие количества газообразных ионов; во-вторых, берется очень узкий пучок ионов (как показано на рисунке), так что используется только часть полученных ионов: в-третьих, слишком большие плотности ионов в пучке могут вызвать эффект объемного заряда, который мешает разделению.
Все разработанные до 1941 г. устройства, основанные на электромагнитном методе, имели большие коэффициенты разделения, но низкие производительность и эффективность. Это послужило причиной того, почему летом 1941 г. Комитет по урану отказался от применения электромагнитных методов для выделения U-235 в больших масштабах (см. параграф 4.31). Позднее, однако, было показано, что указанные ограничения не непреодолимы. Действительно, первые образцы чистого U-235 ощутимых размеров были получены посредством электромагнитного разделения, как это описано в следующей главе.
ДРУГИЕ МЕТОДЫ РАЗДЕЛЕНИЯ ИЗОТОПОВ
9.31. В дополнение к методам разделения изотопов, описанным выше, было испытано также несколько других. Метод ионной подвижности, как указывает название, основан на следующем факте.
В растворе электролита два иона, химически тождественные, но с различными массами, движутся через раствор с различными скоростями под действием электрического поля. Однако, различие в подвижности мало и легко затемняется возмущающими явлениями. А. К. Бруэр (Бюро Стандартов) сообщал, что добился разделения изотопов калия этим методом. Бруэр также получил интересные результаты с методом выпаривания. В главе XI описаны два новые электромагнитные метода — изотропный и метод ионного центрифугирования. Изотронный метод дал некоторое количество образцов порядочных размеров частично разделенного урана; на ионной центрифуге также были получены образцы, обнаруживающие разделение урана, но ее работа была неустойчива.
КАСКАДНЫЕ И КОМБИНИРОВАННЫЕ ПРОЦЕССЫ
9.32. Во всех статистических методах разделения изотопов для получения вещества, содержащего 90% или больше U-235 или дейтерия, необходимо много последовательных ступеней разделения. Если поток движется непрерывно от одной ступени к следующей, то ряд таких последовательных ступеней разделения называется каскадом (фракционирующая колонна из отдельных тарелок является примером простого каскада разделительной установки). Теория каскада была разработана Р. П. Фейнменом (Принстон) и другими для определенного типа электромагнитного сепаратора и К. Когеном и И. Капланом (Колумбийский университет), М. Бенедиктом и А. М. Сквайрсом (корпорация Келлекс) и др. — для диффузионных процессов. Здесь мы отметим только два момента, касающиеся многоступенчатых, или «каскадных» установок.
9.33. В каскадных установках должна быть применена рециркуляция. В установке для выделения U-235 вещество, поступающее в любую ступень, кроме первой, уже обогащено U-235. Часть этого вещества может быть еще раз обогащена при прохождении через эту ступень. Остальная часть вещества будет обеднена, но все же не полностью обесценена. Она должна быть возвращена на рециркуляцию в более низкую ступень. Даже обедненное вещество из первой (наименее обогащенной) ступени нужно направить на рециркуляцию, так как некоторое количество U-235, которое в нем содержится, может быть извлечено (регенерировано).
9.34. Рассматривая установившуюся работу ступени, мы увидим, что полезный поток урана сквозь первую ступень должен быть по крайней мере в 140 раз больше, чем сквозь последнюю ступень. Полезный поток в любой ступени пропорционален относительной концентрации U-238 и таким образом уменьшается с числом пройденных ступеней. Так как любой данный образец вещества подвергается многократной рециркуляции, то количество вещества, прошедшего через любую ступень, значительно больше, чем полезный поток сквозь эту ступень, но пропорционально ему.
9.35. Мы остановились на этих вопросах, чтобы осветить ту сторону проблемы разделения, которая не всегда очевидна, а именно, что процесс разделения, являющийся лучшим для ранних ступеней разделения, не обязательно является лучшим для последующих ступеней. Факторы, которые мы отметили, различны не только для разных ступеней, но и для разных процессов разделения. Например, рециркуляция значительно проще осуществляется на диффузионной установке, чем на электромагнитной. Установка, сочетающая два или более процесса, может оказаться наилучшей для достижения требуемого конечного разделения. На более низкой (следовательно более крупной) ступени размеры потребного оборудования и мощности могут определить выбор процесса. На более высокой (меньшей) ступени эти факторы уступают удобству в эксплоатации и времени установления равновесия, которые могут сделать более выгодным другой метод.
УСТАНОВКИ ДЛЯ ТЯЖЕЛОЙ ВОДЫ
ОПЫТНАЯ УСТАНОВКА ПО МЕТОДУ ЦЕНТРИФУГИРОВАНИЯ
9.36. Следующие две главы посвящены описанию трех методов, применяемых для промышленного разделения изотопов урана. Они имеют наибольшее значение для Проекта в настоящее время. В начале работы представлялось, что центрифугирование может оказаться наилучшим методом разделения изотопов урана. и что в качестве замедлителя потребуется тяжелая вода. Мы кратко опишем опытную установку по методу центрифугирования и завод для производства тяжелой воды.
ЗАВОДЫ ДЛЯ ПРОИЗВОДСТВА ТЯЖЕЛОЙ ВОДЫ
9.37. Для концентрации дейтерия использовались два метода: фракционная перегонка воды и метод изотопного обмена водород-вода.
9.38. В первом из них применяются хорошо разработанные методы фракционной перегонки, но требуемая длительность перегонки очень велика, так как разность точек кипения легкой и тяжелой воды незначительна. По той же причине количество потребного пара очень велико. Метод очень дорог, но заводы смогли быть сооружены при минимуме исследовательских работ. Заводы были начаты стройкой фирмой Дюпон в январе 1943 г. и пущены в ход в январе 1944 г.
9.39. Второй метод производства тяжелой воды основан на каталитическом обмене дейтерием между газообразным водородом и водой. Когда такой обмен при помощи катализаторов устанавливается, концентрация дейтерия в воде, как указывалось, больше, чем в газе, приблизительно в три раза.
9.40. При осуществлении процесса изотопного обмена воду подают в колонну, противотоком к водороду и пару довольно сложным способом. На дне колонны в электролизере вода разлагается на газообразные водород и кислород, и, затем, водород, смешанный с паром, подается обратно в нижнюю часть колонны. Смесь пара и водорода проходит через слой катализатора и барботирует через стекающую вниз воду. Сущность процесса заключается в том, что часть дейтерия, находившегося первоначально в водороде, концентрируется в паре и затем переносится в стекающую вниз воду. Завод состоит из каскада колонн с самой большой колонной на входе и самыми маленькими колоннами на выходе. Построение этого каскада основано на тех же принципах, которые мы рассмотрели выше в общем обзоре методов разделения. Осуществление процесса требует очень активных катализаторов для обменных реакций. Наиболее эффективный катализатор был найден X.С. Тэйлором в Принстонском университете. Одновременно, менее активный катализатор был открыт А. фон Гроссе. Для улучшения этих катализаторов Р. Г. Крист (Колумбийский университет) сделал необходимые определения физических констант, а Г. Р. Арнольд (фирма Дюпон) провел работы по усовершенствованию одного из катализаторов.
9.41. Описанный процесс был экономичен. Ввиду необходимости применения электролитического водорода установка была расположена на территории завода Consolidated Mining and Smelting Co. в Трэйле (Британская Колумбия, Канада). Строительством завода руководил Э. Р. Мерфри и Ф. Т. Бар из фирмы Standard Oil Development Co.
ОПЫТНЫЙ ЗАВОД ПО МЕТОДУ ЦЕНТРИФУГИРОВАНИЯ
9.42. В первые дни существования Проекта наиболее подходящими методами разделения урана долго считали метод газовой диффузии и метод центрифугирования. Реализация обоих методов в широком масштабе представляла значительные трудности. После реорганизации, в декабре 1941 г., исследование и развитие метода центрифугирования продолжалось в Виргинском университете и в лаборатории Standard Oil Development Co. в Бэйуэй. Для достижения высоких скоростей на больших центрифугах серьезная работа была проведена фирмой Westinghouse Electric and Manufacturing Co. в Ист-Питсбурге.
9.43. Вследствие больших технических затруднений, возникших в связи с этим, вместо установки промышленного масштаба, была разрешена и построена опытная установка в Бэйуэй, Она успешно работала, и на ней было достигнуто разделение, приближающееся к предсказанному теорией. Позднее установка была остановлена, и работы по методу центрифугирования прекращены. Поэтому в настоящем отчете метод центрифугирования дальше не рассматривается.
РАЗДЕЛЕНИЕ ИЗОТОПОВ И ПРОИЗВОДСТВО ПЛУТОНИЯ
9.44. Наиболее важные методы разделения изотопов, которые были описаны, в принципе были известны и применялись на практике до того, как задача разделения изотопов урана приобрела первостепенное значение. Эти методы не применялись ни для урана (если не говорить о выделении нескольких микрограммов), ни для других веществ в масштабе, сколько-нибудь сравнимом с потребностями настоящего времени. Основными вопросами были стоимость, выход и время, а не принципы разделения. Другими словами, проблема была в основном техническая, а не научная;
получение плутония достигло большого размаха только после того, как стал работать первый котел, и были получены первые микрограммы плутония. Но даже и после этого многие эксперименты, проведенные по плутонию, представляли существенный интерес с точки зрения применения для военных нужд как U-235, так и плутония, и для будущего развития вопросов атомной энергии. Вследствие этого, вопросы производства плутония продолжали представлять более общий интерес, чем вопросы разделения изотопов. Многие исключительно интересные специальные проблемы возникли при разрешении вопроса разделения и потребовали высококвалифицированных научных сил для их разрешения, но они пока еще должны сохраняться в секрете. По этим причинам настоящий не технический отчет делает основной упор на вопрос о плутонии и уделяет меньше места вопросам разделения. Этим мы не хотим сказать, что проблема разделения легче разрешима или что ее разрешение имеет меньшее значение.
КРАТКОЕ СОДЕРЖАНИЕ ГЛАВЫ
9.45. За исключением электромагнитного метода разделения, разделение изотопов основано на небольших отличиях в среднем поведении молекул. Они используются в шести «статистических» методах разделения: (1) газовая диффузия, (2) перегонка, (3) центрифугирование, (4) термодиффузия, (5) обменные реакции, (6) электролиз. Вероятно только методы (1), (3) и (4) подходят для урана, а (2), (5) и (6) более пригодны для выделения дейтерия из водорода. Во всех «статистических» методах коэффициент разделения не велик, так что они требуют многих ступеней, но каждый метод дает возможность переработать большое количество вещества. Все эти методы были успешно опробованы до 1940 г., но ни один из них не применялся в промышленном масштабе, и ни один из них не был использован для урана. Производительность электромагнитного метода еще меньше, но коэффициент разделения больше.
Для промышленного применения электромагнитного метода существовали очевидные ограничения. Благодаря различиям характеристик процесса в различных ступенях разделения, допускалась возможность преимуществ комбинирования двух или более
методов. Проблема развития одного или всех этих методов является не научной, принципиальной, а технической проблемой масштаба и стоимости. Поэтому эти вопросы могут быть освещены более кратко, чем вопросы плутония, хотя они имеют не меньшее значение. Была построена и успешно работала опытная центрифуга. Промышленная установка не была построена. Были построены также заводы для производства тяжелой воды по двум различным методам.